$$$ Current Year: 2010 Month: 2 Day: 21 $$$ **************************************************************************** MIXED ELASTOHYDRODYNAMIC LUBRICATION: A POINT CONTACT CASE INPUT DATA ----------- CASE DESCRIPTION: Smooth Hertzian Solution w/ Subsurface Stress K=2.5 GEOMETRIC PARAMETERS Radius of curvature of Body A in X direction: 20.000000 mm Radius of curvature of Body B in X direction:************ mm Radius of curvature of Body A in Y direction: 79.967000 mm Radius of curvature of Body B in Y direction:************ mm OPERATING CONDITIONS Applied normal load: 2500.0000 N Surface velocity of Body A: 0.00000000 m/s Surface velocity of Body B: 0.00000001 m/s Rolling Velocity: 0.00000001 m/s Slide-To-Roll Ratio: 0.25000000 Ambient temperature of Body A: 120.0000 deg.C Ambient temperature of Body B: 120.0000 deg.C MATERIAL PROPERTIES OF TWO BODIES Body A Body B Unit Young's modulus: 206.000000 206.000000 GPa Poisson's ratio: 0.300000 0.300000 Density: 7.865000 7.865000 g/cm**3 Conductivity: 46.000000 46.000000 W/(m.deg.C) Specific heat: 0.460000 0.460000 N.m/(g.deg.C) SMOOTH SURFACES ASSUMED. Sigma=0.0 LUBRICANT PROPERTIES Lubricant Name: Transmission Fluid Kinematic Viscosity: 50.5000 cSt at 37.778 deg.C 15.0000 cSt at 98.889 deg.C Dynamic Viscosity at Inlet: 0.00000150 Pa.s Pressure-Viscosity Coeff. AL: 0.000010 1/GPa Pressure-viscosity Coeff. AL2: 0.720000 1/GPa Exponent CAK for Power Law: 0.000000 Density at room temperature: 0.866000 g/cm**3 Thermal Conductivity: 0.145000 W/(m.deg.C) Boundary Friction Coefficient: 0.350000 KINEMATIC VISCOSITY EQUATION for Transmission Fluid lg ( lg ( v + 0.6)) = 0.00000 + ( 0.00000 * lg T ) where kinematic viscosity v is in cSt temperature T is in degree K DYNAMIC VISCOSITY EQUATION for Transmission Fluid ET = ETO * EXP [ AL * P + ( BET + GAM * P )( 1/T - 1/TO )] where ET is the dynamic viscosity at temperature T and pressure P ETO is the dynamic viscosity at temperature TO and atmospheric pressure ETO =0.0000015000 Pa.s AL is the pressure-viscosity exponent AL = 0.00001000 1/GPa BET is the temperature-viscosity exponent BET = 0.0000 deg.K GAM is the pressure-temperature-viscosity exponent GAM = 0.00000000 deg.K/GPa temperatures T and TO are in deg.K TO = 0.0000 deg.K pressure P is in GPa **************************************************************************** RESULTS OF CALCULATION ---------------------- Actual Hertzian Contact Parameters: Ph= 1.6524823 A= 0.53753 B= 1.34383 K= 2.50003 474 E0= 226.37363 RX= 20.0000 RY= 79.9670 PLMT= ********* GPa NTC= 1 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 0 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 Numerical Solution Control Parameters: Wedge Term Scheme_X: Blue-DXR Squeeze Term Scheme_T: Blue-DXR dT to dX Correlation Ratio: Independent dS/dX Differential Scheme: 2nd Central Roughness Interpolation Level: 2nd Order Correlation Between DXR and DX: Independent Correlation Between DYR and DY: Independent Recalculate DX1,DX2 Using D1,D2 for SIN: Yes Dimensionless Time Step Length: 0.0220851 Lowest Mesh Level and First Level Mesh Numbers M/N: 4 32 / 32 Delta_S1= 0.0193244 Delta_S2= 0.0248457 Delta_T= 0.0220851 X0 = 0.0000 Y0 = 0.0000 from Smooth.dat Dimensionless Parameters and Film Thickness Estimates by Conventional Theories for Point Contacts: Material Parameter GR = 0.00226 Speed Parameter UR =0.165655E-23 Load Parameter WR =0.276092E-04 Viscosity Parameter Gv =0.173611E+32 Elasticity Parameter Ge =0.253746E+36 Load Parameter M =0.112429E+14 Materials Parameter L =0.305411E-08 Ellipticity Parameter K = 2.500035 Slide-To-Roll Ratio S = 0.250000 Hc from EHL Theory =0.226553E-16 0.0000 nm Hm from EHL Theory =0.217784E-16 0.0000 nm Hc from Isovisc-Rigid Theory =0.452280E-35 0.0000 nm Hc from Piezovisc-Rigid Theory =0.195521E-25 0.0000 nm Hc from Isovisc-Elastic Theory =0.135635E-13 0.0000 nm Hm from Isovisc-Elastic Theory =0.100222E-13 0.0000 nm Film Thickness Hc(Ge,Gv)=0.629313E+22 Film Thickness Hm(Ge,Gv)=0.604956E+22 Film Thickness Hc(M,L) =0.124466E-04 Film Thickness Hm(M,L) =0.119649E-04 Nominal Lambda Ratio =************ Inlet Distance X0 = 1.500000 Outlet Distance Xe = 1.500000 Lateral Distance Y0 = 1.500000 Minimum X0 Required for Flooded= 1.000000 Ratio of HcActual to HcFlood = 1.000000 Pressure-Viscosity Relation: Barus Law, AL= 0.0000100 Calculated Load/Input Load = 0.99999868 KLEV = 4 Calculated Load/Input Load = 0.99999868 KLEV = 4 FW =-.269660E-14 KLEV = 4 M = 256 N = 256 Dx = 0.0117188 Dy = 0.0117188 X0 =-1.5000000 Xe = 1.5000000 Y0 =-1.5000000 Timing Starts (sec)= 3.63482330000000 IT= 2 Err=.00000399 H0=-0.0344446 HR0=-0.0344446 HHR0=-0.0344446 Pa= 0.93459 NCONT = 5721 ER= 0.02049167 NT= 1 Max. von Mises Stress = 0.686218 at X=-0.984375 Y= 0.000000 Z= 0.000000 NT= 1 Current X0= -1.5000 HC= 0.000000000 0.000000E+00 0.000 nm Estimated X0= -1.000 Estimated HCs/HC= 1.00000 HMIN= 0.000 nm NTC= 1 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 0 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 KLEV = 4 M = 256 N = 256 Dx = 0.0117188 Dy = 0.0117188 X0 =-1.5000000 Xe = 1.5000000 Y0 =-1.5000000 SUMMARY OF RESULTS: Central Film Thickness(For smooth): 0.000000E+00 0.0000 nm Average Film Thickness at Center: 0.810793E-11 0.0000 nm Minimum Film THickness: 0.000000E+00 0.0000 nm Film Thickness (Lambda) Ratio: 0.00000 Contact Load Ratio Wc: 85.27590 % Contact Area Ratio Ac: 74.71552 % RMS Roughness after Deformation: 0.00000 micron Pressure Peak Height: 1.00000 1652.482281 MPa Inlext Distance X0: 1.500000 Coefficient of Friction: 0.00000000 Max.Flash Temperature Rise - Body A: 0.0000 Deg.C Max.Flash Temperature Rise - Body B: 0.0000 Deg.C Accumulated Wear - Body A: 0.000000E+00 mm**3 Accumulated Wear - Body B: 0.000000E+00 mm**3 Timing Starts at (sec)= 3.6348 Timing stops at (sec) = 345.5734 Total CPU Time (sec) = 341.9386