$$$ Current Year: 2010 Month: 2 Day: 21 $$$ **************************************************************************** MIXED ELASTOHYDRODYNAMIC LUBRICATION: A LINE CONTACT CASE INPUT DATA ----------- CASE DESCRIPTION: Smooth Line Contact, U=625, W=800N GEOMETRIC PARAMETERS Radius of curvature of Body A in X direction: 19.050000 mm Radius of curvature of Body B in X direction:************ mm Contact Length Defined for Analysis: 1.898686 mm OPERATING CONDITIONS Applied load per unit length: 1595.0000 N/mm Surface velocity of Body A: 0.54687500 m/s Surface velocity of Body B: 0.70312500 m/s Rolling Velocity: 0.62500000 m/s Slide-To-Roll Ratio: 0.25000000 Ambient temperature of Body A: 40.0000 deg.C Ambient temperature of Body B: 40.0000 deg.C MATERIAL PROPERTIES OF TWO BODIES Body A Body B Unit Young's modulus: 200.000000 200.000000 GPa Poisson's ratio: 0.300000 0.300000 Density: 7.865000 7.865000 g/cm**3 Conductivity: 46.000000 46.000000 W/(m.deg.C) Specific heat: 0.460000 0.460000 N.m/(g.deg.C) SMOOTH SURFACES ASSUMED. Sigma=0.0 LUBRICANT PROPERTIES Lubricant Name: Base Mineral Oil Kinematic Viscosity: 0.0000 cSt at 0.000 deg.C 0.0000 cSt at 0.000 deg.C Dynamic Viscosity at Inlet: 0.09600000 Pa.s Pressure-Viscosity Coeff. AL: 18.200000 1/GPa Pressure-viscosity Coeff. AL2: 0.720000 1/GPa Exponent CAK for Power Law: 16.000000 Density at room temperature: 0.880000 g/cm**3 Thermal Conductivity: 0.145000 W/(m.deg.C) Boundary Friction Coefficient: 0.150000 KINEMATIC VISCOSITY EQUATION for Base Mineral Oil lg ( lg ( v + 0.6)) = 0.00000 + ( 0.00000 * lg T ) where kinematic viscosity v is in cSt temperature T is in degree K DYNAMIC VISCOSITY EQUATION for Base Mineral Oil ET = ETO * EXP [ AL * P + ( BET + GAM * P )( 1/T - 1/TO )] where ET is the dynamic viscosity at temperature T and pressure P ETO is the dynamic viscosity at temperature TO and atmospheric pressure ETO =0.0960000000 Pa.s AL is the pressure-viscosity exponent AL = 18.20000000 1/GPa BET is the temperature-viscosity exponent BET = 0.0000 deg.K GAM is the pressure-temperature-viscosity exponent GAM = 0.00000000 deg.K/GPa temperatures T and TO are in deg.K TO = 0.0000 deg.K pressure P is in GPa **************************************************************************** RESULTS OF CALCULATION ---------------------- Actual Hertzian Contact Parameters: Ph= 1.7113457 A= 0.59334 YL= 1.89869 W= 3028.403 102 E0= 219.78023 RX= 19.0500 PLMT= ********* GPa NTC= 500 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 0 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 Numerical Solution Control Parameters: Wedge Term Scheme_X: Blue-DXR Squeeze Term Scheme_T: Blue-DXR dT to dX Correlation Ratio: 2 dS/dX Differential Scheme: 2nd Central Roughness Interpolation Level: 2nd Order Correlation Between DXR and DX: Independent Correlation Between DYR and DY: Independent Recalculate DX1,DX2 Using D1,D2 for SIN: Yes Dimensionless Time Step Length: 0.0888892 Lowest Mesh Level and First Level Mesh Numbers M/N: 2 32 / 32 Delta_S1= 0.0777781 Delta_S2= 0.1000004 Delta_T= 0.0888892 X0 = 0.0000 Y0 = 0.0000 from Smooth.dat Dimensionless Parameters and Film Thickness Estimates by Conventional Theories for Line or Roller Contacts: Material Parameter GR = 4000.00029 Speed Parameter UR =0.143307E-10 Load Parameter WR =0.380959E-03 Viscosity Parameter Gv =0.785675E+04 Elasticity Parameter Ge =0.100634E+03 Load Parameter M =0.711588E+02 Materials Parameter L =0.925518E+01 Slide-To-Roll Ratio S = 0.250000 Hc from EHL Theory =0.166863E-04 317.8738 nm Hm from EHL Theory =0.155625E-04 296.4647 nm Hc from Isovisc-Rigid Theory =0.184326E-06 3.5114 nm Hc from Piezovisc-Rigid Theory =0.246790E-04 470.1335 nm Hm from Isovisc-Elastic Theory =0.453056E-05 86.3070 nm Film Thickness Hc(Ge,Gv)=0.443578E+03 Film Thickness Hm(Ge,Gv)=0.413703E+03 Film Thickness Hc(M,L) =0.311682E+01 Film Thickness Hm(M,L) =0.290690E+01 Nominal Lambda Ratio =************ Inlet Distance X0 = 2.100000 Outlet Distance Xe = 1.100000 Lateral Distance Y0 = 1.600000 Minimum X0 Required for Flooded= 1.234519 Ratio of HcActual to HcFlood = 1.000000 EHL Central Film Thickness Estimates Hc from Pan & Hamrock (1989) = 317.8738 nm Hc from Grubin (1949) = 411.2327 nm Hc from Dowson & Toyoda (1978) = 439.0425 nm Hc from Yang & Wen (1987) = 285.5802 nm Hc from Wymer (1972) = 450.6135 nm EHL Minimum Film Thickness Estimates Hm from Pan & Hamrock (1989) = 296.4647 nm Hm from Dowson & Higginson (1961)= 315.5906 nm Hm from Dowson (1968) = 317.7799 nm Hm from Yang & Wen (1987) = 271.1399 nm Hm from Hamrock & Jacobson (1984)= 225.5166 nm Pressure-Viscosity Relation: Barus Law, AL= 18.2000009 Calculated Load/Input Load = 0.99836208 KLEV = 2 Calculated Load/Input Load = 0.99836208 KLEV = 2 FW =-.100000E-02 KLEV = 2 M = 64 N = 64 Dx = 0.0500000 Dy = 0.0500000 X0 =-2.1000000 Xe = 1.1000000 Y0 =-1.6000000 Timing Starts (sec)= 2.48041590000000 ************** Mesh Level Changed From 2 To 3 at NT= 45 ************** NT= 50 IT= 12 Er=0.001759203 0.00031136 Ha=0.00059615 353.720 nm CPU= 11.2 ************** Mesh Level Changed From 3 To 4 at NT= 85 ************** NT= 100 IT= 12 Er=0.000841229 0.00006927 Ha=0.00061628 365.661 nm CPU= 44.6 NT= 120 IT= 12 Er=0.000599290 0.00005223 Ha=0.00061458 364.654 nm CPU= 71.1 NT= 140 IT= 12 Er=0.000527223 0.00004694 Ha=0.00061400 364.311 nm CPU= 97.7 NT= 160 IT= 12 Er=0.000414917 0.00004205 Ha=0.00061383 364.207 nm CPU= 125.2 NT= 180 IT= 12 Er=0.000296509 0.00003604 Ha=0.00061082 362.422 nm CPU= 152.2 NT= 200 IT= 12 Er=0.000329940 0.00003506 Ha=0.00060248 357.476 nm CPU= 178.9 NT= 220 IT= 12 Er=0.000357304 0.00003682 Ha=0.00058960 349.832 nm CPU= 206.0 NT= 240 IT= 12 Er=0.000328297 0.00003579 Ha=0.00057604 341.786 nm CPU= 232.8 NT= 260 IT= 12 Er=0.000256859 0.00003364 Ha=0.00056635 336.037 nm CPU= 260.0 NT= 280 IT= 12 Er=0.000308866 0.00003459 Ha=0.00056307 334.090 nm CPU= 287.0 NT= 300 IT= 12 Er=0.000345872 0.00003167 Ha=0.00056560 335.593 nm CPU= 314.1 NT= 320 IT= 12 Er=0.000292091 0.00002602 Ha=0.00057115 338.884 nm CPU= 341.4 NT= 340 IT= 12 Er=0.000203432 0.00002017 Ha=0.00057665 342.151 nm CPU= 368.6 NT= 360 IT= 12 Er=0.000207482 0.00001910 Ha=0.00058025 344.286 nm CPU= 395.9 NT= 380 IT= 12 Er=0.000223803 0.00001809 Ha=0.00058147 345.012 nm CPU= 423.0 NT= 400 IT= 12 Er=0.000193394 0.00001501 Ha=0.00058069 344.545 nm CPU= 449.7 NT= 420 IT= 12 Er=0.000136368 0.00001101 Ha=0.00057848 343.238 nm CPU= 476.2 NT= 440 IT= 12 Er=0.000124303 0.00000992 Ha=0.00057548 341.453 nm CPU= 503.2 NT= 460 IT= 12 Er=0.000125015 0.00001003 Ha=0.00057234 339.594 nm CPU= 529.8 NT= 480 IT= 12 Er=0.000113946 0.00000981 Ha=0.00056986 338.123 nm CPU= 556.6 NT= 500 IT= 12 Er=0.000087597 0.00000848 Ha=0.00056870 337.433 nm CPU= 583.3 IT= 12 Err=.00000848 H0=-0.0941806 HR0=-0.0941805 HHR0=-0.0941805 Pa= 0.95607 NCONT = 20303 ER= 0.00008760 NT= 500 Max. von Mises Stress = 0.557164 at X= 0.012500 Y= 0.000000 Z= 0.705000 NT= 500 Current X0= -2.1000 HC= 0.000566698 0.176507E-04 336.244 nm Estimated X0= -1.235 Estimated HCs/HC= 1.00000 HMIN= 303.142 nm NTC= 500 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 0 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 KLEV = 4 M = 256 N = 256 Dx = 0.0125000 Dy = 0.0125000 X0 =-2.1000000 Xe = 1.1000000 Y0 =-1.6000000 SUMMARY OF RESULTS: Central Film Thickness(For smooth): 0.566698E-03 336.2441 nm Average Film Thickness at Center: 0.568702E-03 337.4335 nm Minimum Film THickness: 0.510908E-03 303.1417 nm Film Thickness (Lambda) Ratio: 0.67487 Contact Load Ratio Wc: 0.00000 % Contact Area Ratio Ac: 0.00000 % RMS Roughness after Deformation: 0.00112 micron Pressure Peak Height: 0.99839 1708.595432 MPa Inlext Distance X0: 2.100000 Coefficient of Friction: 0.00000000 Max.Flash Temperature Rise - Body A: 0.0000 Deg.C Max.Flash Temperature Rise - Body B: 0.0000 Deg.C Accumulated Wear - Body A: 0.000000E+00 mm**3 Accumulated Wear - Body B: 0.000000E+00 mm**3 Timing Starts at (sec)= 2.4804 Timing stops at (sec) = 1568.5121 Total CPU Time (sec) = 1566.0316