$$$ Current Year: 2010 Month: 2 Day: 21 $$$ **************************************************************************** MIXED ELASTOHYDRODYNAMIC LUBRICATION: A LINE CONTACT CASE INPUT DATA ----------- CASE DESCRIPTION: U=0.000005 m/s, Smooth Subsurface Line Contact GEOMETRIC PARAMETERS Radius of curvature of Body A in X direction: 25.400000 mm Radius of curvature of Body B in X direction:************ mm Contact Length Defined for Analysis: 2.535509 mm OPERATING CONDITIONS Applied load per unit length: 2500.0000 N/mm Surface velocity of Body A: 0.14000000 m/s Surface velocity of Body B: 0.18000000 m/s Rolling Velocity: 0.16000000 m/s Slide-To-Roll Ratio: 0.25000000 Ambient temperature of Body A: 120.0000 deg.C Ambient temperature of Body B: 120.0000 deg.C MATERIAL PROPERTIES OF TWO BODIES Body A Body B Unit Young's modulus: 206.000000 206.000000 GPa Poisson's ratio: 0.300000 0.300000 Density: 7.865000 7.865000 g/cm**3 Conductivity: 46.000000 46.000000 W/(m.deg.C) Specific heat: 0.460000 0.460000 N.m/(g.deg.C) SMOOTH SURFACES ASSUMED. Sigma=0.0 LUBRICANT PROPERTIES Lubricant Name: Transmission Fluid Kinematic Viscosity: 50.5000 cSt at 37.778 deg.C 15.0000 cSt at 98.889 deg.C Dynamic Viscosity at Inlet: 0.01119000 Pa.s Pressure-Viscosity Coeff. AL: 14.940000 1/GPa Pressure-viscosity Coeff. AL2: 0.720000 1/GPa Exponent CAK for Power Law: 0.000000 Density at room temperature: 0.866000 g/cm**3 Thermal Conductivity: 0.145000 W/(m.deg.C) Boundary Friction Coefficient: 0.100000 KINEMATIC VISCOSITY EQUATION for Transmission Fluid lg ( lg ( v + 0.6)) = 0.00000 + ( 0.00000 * lg T ) where kinematic viscosity v is in cSt temperature T is in degree K DYNAMIC VISCOSITY EQUATION for Transmission Fluid ET = ETO * EXP [ AL * P + ( BET + GAM * P )( 1/T - 1/TO )] where ET is the dynamic viscosity at temperature T and pressure P ETO is the dynamic viscosity at temperature TO and atmospheric pressure ETO =0.0111900000 Pa.s AL is the pressure-viscosity exponent AL = 14.94000000 1/GPa BET is the temperature-viscosity exponent BET = 0.0000 deg.K GAM is the pressure-temperature-viscosity exponent GAM = 0.00000000 deg.K/GPa temperatures T and TO are in deg.K TO = 0.0000 deg.K pressure P is in GPa **************************************************************************** RESULTS OF CALCULATION ---------------------- Actual Hertzian Contact Parameters: Ph= 1.8831119 A= 0.84517 YL= 2.53551 W= 6338.774 466 E0= 226.37363 RX= 25.4000 PLMT= ********* GPa NTC= 500 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 2 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 Numerical Solution Control Parameters: Wedge Term Scheme_X: Blue-DXR Squeeze Term Scheme_T: Blue-DXR dT to dX Correlation Ratio: Independent dS/dX Differential Scheme: 2nd Central Roughness Interpolation Level: 2nd Order Correlation Between DXR and DX: Independent Correlation Between DYR and DY: Independent Recalculate DX1,DX2 Using D1,D2 for SIN: Yes Dimensionless Time Step Length: 0.0208492 Lowest Mesh Level and First Level Mesh Numbers M/N: 2 48 / 32 Delta_S1= 0.0182431 Delta_S2= 0.0234554 Delta_T= 0.0208492 X0 = 0.0000 Y0 = 0.0000 from Smooth.dat Dimensionless Parameters and Film Thickness Estimates by Conventional Theories for Line or Roller Contacts: Material Parameter GR = 3382.02223 Speed Parameter UR =0.311380E-12 Load Parameter WR =0.434791E-03 Viscosity Parameter Gv =0.549480E+05 Elasticity Parameter Ge =0.779175E+03 Load Parameter M =0.550960E+03 Materials Parameter L =0.300439E+01 Slide-To-Roll Ratio S = 0.250000 Hc from EHL Theory =0.106610E-05 27.0788 nm Hm from EHL Theory =0.975499E-06 24.7777 nm Hc from Isovisc-Rigid Theory =0.350918E-08 0.0891 nm Hc from Piezovisc-Rigid Theory =0.171825E-05 43.6435 nm Hm from Isovisc-Elastic Theory =0.443491E-06 11.2647 nm Film Thickness Hc(Ge,Gv)=0.148863E+04 Film Thickness Hm(Ge,Gv)=0.136212E+04 Film Thickness Hc(M,L) =0.135094E+01 Film Thickness Hm(M,L) =0.123614E+01 Nominal Lambda Ratio =************ Inlet Distance X0 = 1.800000 Outlet Distance Xe = 1.200000 Lateral Distance Y0 = 1.500000 Minimum X0 Required for Flooded= 1.034316 Ratio of HcActual to HcFlood = 1.000000 EHL Central Film Thickness Estimates Hc from Pan & Hamrock (1989) = 27.0788 nm Hc from Grubin (1949) = 29.6049 nm Hc from Dowson & Toyoda (1978) = 37.4487 nm Hc from Yang & Wen (1987) = 20.3906 nm Hc from Wymer (1972) = 45.9629 nm EHL Minimum Film Thickness Estimates Hm from Pan & Hamrock (1989) = 24.7777 nm Hm from Dowson & Higginson (1961)= 25.6322 nm Hm from Dowson (1968) = 26.0713 nm Hm from Yang & Wen (1987) = 18.3268 nm Hm from Hamrock & Jacobson (1984)= 17.8839 nm Pressure-Viscosity Relation: Barus Law, AL= 14.9400007 Calculated Load/Input Load = 1.00070161 KLEV = 2 Calculated Load/Input Load = 1.00070161 KLEV = 2 FW =-.100000E-02 KLEV = 2 M = 96 N = 64 Dx = 0.0312500 Dy = 0.0468750 X0 =-1.8000000 Xe = 1.2000000 Y0 =-1.5000000 Timing Starts (sec)= 3.83762460000000 NT= 50 IT= 47 Er=0.000197348 0.00061966 Ha=0.00000752 6.354 nm CPU= 37.0 NT= 100 IT= 39 Er=0.000191554 0.00046858 Ha=0.00000000 0.000 nm CPU= 61.3 ************** Mesh Level Changed From 2 To 3 at NT= 120 ************** NT= 150 IT= 104 Er=0.000188275 0.00111599 Ha=0.00011725 99.098 nm CPU= 228.4 NT= 200 IT= 88 Er=0.000193872 0.00089640 Ha=0.00000000 0.000 nm CPU= 417.8 ************** Mesh Level Changed From 3 To 4 at NT= 215 ************** NT= 220 IT= 231 Er=0.000199893 0.00138758 Ha=0.00009729 82.226 nm CPU= 700.2 NT= 240 IT= 143 Er=0.000199592 0.00080631 Ha=0.00009388 79.342 nm CPU= 1305.7 NT= 260 IT= 112 Er=0.000199989 0.00058230 Ha=0.00006262 52.925 nm CPU= 1796.2 NT= 280 IT= 96 Er=0.000198087 0.00050512 Ha=0.00003091 26.125 nm CPU= 2204.4 NT= 300 IT= 99 Er=0.000195300 0.00048371 Ha=0.00001988 16.801 nm CPU= 2628.7 NT= 320 IT= 104 Er=0.000197676 0.00036636 Ha=0.00002006 16.955 nm CPU= 3126.6 NT= 340 IT= 64 Er=0.000197719 0.00014621 Ha=0.00002047 17.300 nm CPU= 3501.8 NT= 360 IT= 38 Er=0.000197405 0.00005800 Ha=0.00002074 17.526 nm CPU= 3828.0 NT= 380 IT= 13 Er=0.000198742 0.00001501 Ha=0.00002078 17.561 nm CPU= 4089.7 NT= 400 IT= 12 Er=0.000158815 0.00001098 Ha=0.00002068 17.476 nm CPU= 4325.0 NT= 420 IT= 12 Er=0.000125749 0.00000872 Ha=0.00002071 17.506 nm CPU= 4564.4 NT= 440 IT= 12 Er=0.000103173 0.00000715 Ha=0.00002085 17.621 nm CPU= 4781.5 NT= 460 IT= 12 Er=0.000080295 0.00000563 Ha=0.00002088 17.650 nm CPU= 5002.3 NT= 480 IT= 12 Er=0.000067758 0.00000472 Ha=0.00002078 17.566 nm CPU= 5225.9 NT= 500 IT= 12 Er=0.000052310 0.00000374 Ha=0.00002069 17.484 nm CPU= 5478.9 IT= 12 Err=.00000374 H0=-0.1001717 HR0=-0.1001717 HHR0=-0.1001717 Pa= 0.95657 NCONT = 32896 ER= 0.00005231 NT= 500 Max. Shear Stress = 0.301881 at X=-0.003125 Y= 0.000000 Z= 0.785000 NT= 500 Current X0= -1.8000 HC= 0.000020669 0.687747E-06 17.469 nm Estimated X0= -1.034 Estimated HCs/HC= 1.00000 HMIN= 15.777 nm NTC= 500 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 2 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 KLEV = 4 M = 384 N = 256 Dx = 0.0078125 Dy = 0.0117188 X0 =-1.8000000 Xe = 1.2000000 Y0 =-1.5000000 SUMMARY OF RESULTS: Central Film Thickness(For smooth): 0.206690E-04 17.4688 nm Average Film Thickness at Center: 0.206866E-04 17.4837 nm Minimum Film THickness: 0.186678E-04 15.7775 nm Film Thickness (Lambda) Ratio: 0.04371 Contact Load Ratio Wc: 0.00000 % Contact Area Ratio Ac: 0.00000 % RMS Roughness after Deformation: 0.00007 micron Pressure Peak Height: 0.99998 1883.076993 MPa Inlext Distance X0: 1.800000 Coefficient of Friction: 0.04242280 Max.Flash Temperature Rise - Body A: 97.2958 Deg.C Max.Flash Temperature Rise - Body B: 58.7481 Deg.C Accumulated Wear - Body A: 0.000000E+00 mm**3 Accumulated Wear - Body B: 0.000000E+00 mm**3 Timing Starts at (sec)= 3.8376 Timing stops at (sec) = 6952.8086 Total CPU Time (sec) = 6948.9709