$$$ Current Year: 2010 Month: 11 Day: 19 $$$ **************************************************************************** MIXED ELASTOHYDRODYNAMIC LUBRICATION: A ROLLER CONTACT CASE INPUT DATA ----------- CASE DESCRIPTION: Smooth Roller Contact w/ 15 Degree Chamfers GEOMETRIC PARAMETERS Radius of curvature of Body A in X direction: 19.050000 mm Radius of curvature of Body B in X direction:************ mm Radius of curvature of Body A in Y direction: 1270.000000 mm Radius of curvature of Body B in Y direction:************ mm Roller nominal contact length: 5.000000 mm Roller end chamfer angle: 15.000000 degree Roller end chamfer width: 0.750000 mm OPERATING CONDITIONS Applied normal load: 6000.0000 N Surface velocity of Body A: 0.54687500 m/s Surface velocity of Body B: 0.70312500 m/s Rolling Velocity: 0.62500000 m/s Slide-To-Roll Ratio: 0.25000000 Ambient temperature of Body A: 40.0000 deg.C Ambient temperature of Body B: 40.0000 deg.C MATERIAL PROPERTIES OF TWO BODIES Body A Body B Unit Young's modulus: 200.000000 200.000000 GPa Poisson's ratio: 0.300000 0.300000 Density: 7.865000 7.865000 g/cm**3 Conductivity: 46.000000 46.000000 W/(m.deg.C) Specific heat: 0.460000 0.460000 N.m/(g.deg.C) SMOOTH SURFACES ASSUMED. Sigma=0.0 LUBRICANT PROPERTIES Lubricant Name: Base Mineral Oil Kinematic Viscosity: 105.5000 cSt at 40.000 deg.C 27.8000 cSt at 100.000 deg.C Dynamic Viscosity at Inlet: 0.09600000 Pa.s Pressure-Viscosity Coeff. AL: 18.200000 1/GPa Pressure-viscosity Coeff. AL2: 0.720000 1/GPa Exponent CAK for Power Law: 16.000000 Density at room temperature: 0.880000 g/cm**3 Thermal Conductivity: 0.145000 W/(m.deg.C) Boundary Friction Coefficient: 0.150000 KINEMATIC VISCOSITY EQUATION for Base Mineral Oil lg ( lg ( v + 0.6)) = 0.00000 + ( 0.00000 * lg T ) where kinematic viscosity v is in cSt temperature T is in degree K DYNAMIC VISCOSITY EQUATION for Base Mineral Oil ET = ETO * EXP [ AL * P + ( BET + GAM * P )( 1/T - 1/TO )] where ET is the dynamic viscosity at temperature T and pressure P ETO is the dynamic viscosity at temperature TO and atmospheric pressure ETO =0.0960000000 Pa.s AL is the pressure-viscosity exponent AL = 18.20000000 1/GPa BET is the temperature-viscosity exponent BET = 0.0000 deg.K GAM is the pressure-temperature-viscosity exponent GAM = 0.00000000 deg.K/GPa temperatures T and TO are in deg.K TO = 0.0000 deg.K pressure P is in GPa **************************************************************************** RESULTS OF CALCULATION ---------------------- Actual Hertzian Contact Parameters: Ph= 1.4843882 A= 0.51465 B= 2.50000 K= 4.85765 205 E0= 219.78023 RX= 19.0500 RY= 1270.0000 PLMT= ********* GPa Roller nominal contact length: 5.000000 mm Roller end chamfer width: 0.750000 mm Roller end chamfer angle: 15.00000 deg. NTC= 250 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 2 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 Numerical Solution Control Parameters: Wedge Term Scheme_X: Blue-DXR Squeeze Term Scheme_T: Blue-DXR dT to dX Correlation Ratio: 2 dS/dX Differential Scheme: 2nd Central Roughness Interpolation Level: 2nd Order Correlation Between DXR and DX: Independent Correlation Between DYR and DY: Independent Recalculate DX1,DX2 Using D1,D2 for SIN: Yes Dimensionless Time Step Length: 0.1222225 Lowest Mesh Level and First Level Mesh Numbers M/N: 2 32 / 32 Delta_S1= 0.1069447 Delta_S2= 0.1375004 Delta_T= 0.1222225 Geometric Parameters for Roller End Chamfer: Roller End Chamfer Angle CANGLE= 15.00000 deg Roller End Chamfer Width RELEN= 0.75000 mm Chamfer Starting Location YSS= 1.75000 mm Distance from Chamfer End to Roller Axis RCC= 18.84783 mm Gap at Chamfer End GAPEND= 0.20217 mm X0 = 0.0000 Y0 = 0.0000 from Smooth.dat Dimensionless Parameters and Film Thickness Estimates by Conventional Theories for Line or Roller Contacts: Material Parameter GR = 4000.00029 Speed Parameter UR =0.143307E-10 Load Parameter WR =0.286614E-03 Viscosity Parameter Gv =0.512711E+04 Elasticity Parameter Ge =0.757118E+02 Load Parameter M =0.535364E+02 Materials Parameter L =0.925517E+01 Slide-To-Roll Ratio S = 0.250000 Hc from EHL Theory =0.174934E-04 333.2495 nm Hm from EHL Theory =0.161397E-04 307.4621 nm Hc from Isovisc-Rigid Theory =0.245000E-06 4.6673 nm Hc from Piezovisc-Rigid Theory =0.246789E-04 470.1339 nm Hm from Isovisc-Elastic Theory =0.479587E-05 91.3614 nm Film Thickness Hc(Ge,Gv)=0.349868E+03 Film Thickness Hm(Ge,Gv)=0.322795E+03 Film Thickness Hc(M,L) =0.326758E+01 Film Thickness Hm(M,L) =0.301473E+01 Nominal Lambda Ratio =************ Inlet Distance X0 = 3.100000 Outlet Distance Xe = 1.300000 Lateral Distance Y0 = 1.050000 Minimum X0 Required for Flooded= 1.292581 Ratio of HcActual to HcFlood = 1.000000 EHL Central Film Thickness Estimates Hc from Pan & Hamrock (1989) = 333.2495 nm Hc from Grubin (1949) = 422.0098 nm Hc from Dowson & Toyoda (1978) = 451.7155 nm Hc from Yang & Wen (1987) = 302.3044 nm Hc from Wymer (1972) = 472.9479 nm EHL Minimum Film Thickness Estimates Hm from Pan & Hamrock (1989) = 307.4621 nm Hm from Dowson & Higginson (1961)= 327.4838 nm Hm from Dowson (1968) = 329.7556 nm Hm from Yang & Wen (1987) = 283.7700 nm Hm from Hamrock & Jacobson (1984)= 232.6872 nm Pressure-Viscosity Relation: Barus Law, AL= 18.2000009 Calculated Load/Input Load = 0.66734664 Mesh Level = 2 Calculated Load/Input Load = 0.66734664 Mesh Level = 2 FW =-.100000E-02 KLEV = 2 M = 64 N = 64 Dx = 0.0687500 Dy = 0.0328125 X0 =-3.1000000 Xe = 1.3000000 Y0 =-1.0500000 Timing Starts (sec)= 1.64062500000000 ************** Mesh Level Changed From 2 To 3 at NT= 27 ************** NT= 50 IT= 223 Er=0.000097581 0.00628986 Ha=0.00052825 271.866 nm CPU= 143.0 ************** Mesh Level Changed From 3 To 4 at NT= 69 ************** NT= 80 IT= 343 Er=0.000099351 0.00248231 Ha=0.00061083 314.366 nm CPU= 835.2 NT= 100 IT= 352 Er=0.000098832 0.00219807 Ha=0.00062986 324.156 nm CPU= 1854.9 NT= 120 IT= 352 Er=0.000098709 0.00205247 Ha=0.00066153 340.456 nm CPU= 2909.8 NT= 140 IT= 331 Er=0.000099801 0.00184414 Ha=0.00066531 342.403 nm CPU= 4000.8 NT= 160 IT= 200 Er=0.000099809 0.00048463 Ha=0.00066648 343.006 nm CPU= 4851.1 NT= 180 IT= 35 Er=0.000099521 0.00004189 Ha=0.00066687 343.207 nm CPU= 5280.7 NT= 200 IT= 12 Er=0.000092401 0.00001234 Ha=0.00066678 343.160 nm CPU= 5476.2 NT= 220 IT= 12 Er=0.000080658 0.00001074 Ha=0.00066618 342.851 nm CPU= 5661.3 NT= 240 IT= 12 Er=0.000069377 0.00000933 Ha=0.00066580 342.655 nm CPU= 5845.8 IT= 12 Err=.00000887 H0=-0.0521850 HR0=-0.0521849 HHR0=-0.0521848 Pa= 1.08084 NCONT = 7018 ER= 0.00006427 NT= 250 Max. von Mises Stress = 2.705079 at X=-0.006250 Y=-0.689063 Z= 0.025000 NT= 250 Current X0= -3.1000 HC= 0.000669890 0.180977E-04 344.761 nm Estimated X0= -1.293 Estimated HCs/HC= 1.00000 HMIN= 0.000 nm NTC= 250 KSURF= 0 KFLOOD= 0 KRHEO= 0 KPLMT= 0 KFRCTMP= 2 PLMT= 100.0000 NSTART= 3 KFFT= 1 KHALF= 1 HLIM= 0.000 nm HAA= 0.00000000 KLEV = 4 M = 256 N = 256 Dx = 0.0171875 Dy = 0.0082031 X0 =-3.1000000 Xe = 1.3000000 Y0 =-1.0500000 SUMMARY OF RESULTS: Central Film Thickness(For smooth): 0.669890E-03 344.7606 nm Average Film Thickness at Center: 0.665777E-03 342.6434 nm Minimum Film THickness: 0.000000E+00 0.0000 nm Film Thickness (Lambda) Ratio: 0.68529 Contact Load Ratio Wc: 0.00002 % Contact Area Ratio Ac: 1.96824 % RMS Roughness after Deformation: 0.00329 micron Pressure Peak Height: 5.42163 8047.809829 MPa Inlext Distance X0: 3.100000 Coefficient of Friction: 0.05968903 Max.Flash Temperature Rise - Body A: 376.7971 Deg.C Max.Flash Temperature Rise - Body B: 335.8865 Deg.C Accumulated Wear - Body A: 0.000000E+00 mm**3 Accumulated Wear - Body B: 0.000000E+00 mm**3 Timing Starts at (sec)= 1.6406 Timing stops at (sec) = 6235.8125 Total CPU Time (sec) = 6234.1719